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1. Introduction

Non-relativistic limit of string theories appear to be solvable sectors [1, 2]. It can provide

us a deeper understanding of string theories and can be helpful to answer some of open

questions as for example AdS/CFT correspondence. In [3 – 6] the non-relativistic limits

of strings and branes have been analyzed using the worldvolume actions. They have the

Galilean supersymmetries and the non-relativistic spectra. A notable property is that the

kappa symmetry can be maintained in the non-relativistic limit. By fixing the kappa gauge

choice suitably these systems become free in the static gauge .

In this paper we examine some of dualities between branes and strings in the non-

relativistic limit using their worldvolume actions. It is interesting to see how these dualities

remain in the non-relativistic limit [1]. Here we study the dualities at the worldvolume

actions by considering the non-relativistic M2-brane as a starting point to obtain non-

relativistic type IIA superstring and non-relativistic D2-brane, using analogous procedures

to the relativistic case [7, 8]. We also examine the T-duality between D2 and D1 branes [9,

10] and find that the T-duality transformations are compatible with the non-relativistic

limit. In the cases we examine in this paper we see the dualities remain in the non-

relativistic sector of the string theories, (figure 1).

The paper is organized as follows. In section 2, we obtain the non-relativistic p-brane

worldvolume action of Polyakov type. In section 3 we consider a reduction from non-

relativistic M2-brane to non-relativistic D2-brane by dualizing the 11-th coordinate in the
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Figure 1: This diagram shows the different ways in which the non-relativistic type IIA string,

non-relativistic D2-brane and non-relativistic D1-string are obtained. Due to the commutativity of

the non-relativistic limit and the dualities, we can arrive at the same actions by taking in different

paths.

same way as in the relativistic case. In section 4 we discuss the double dimensional reduc-

tion of the non-relativistic M2 brane to obtain the non-relativistic type IIA superstring.

In section 5 we analyze the T-duality transformation of the non-relativistic D2-brane to

non-relativistic D1-string. Summary is in the last section and appendices are attached for

notations and some detail.

2. NR limit of p-branes

The non-relativistic limit of the p-branes have been discussed using their worldvolume

actions for the bosonic branes [3] and the supersymmetric ones [4]. It is established how to

obtain worldvolume actions of non-relativistic branes from the relativistic ones of Nambu-

Goto form. Here we make a short summary but starting from Polyakov form action and

we find the non-relativistic p-brane action of Polyakov form.

We start by considering the supersymmetric p-brane action in a flat D dimensional

background,

Sp = Tp

∫
dp+1ξ L, L = LP + LWZ + LB , (2.1)

where Tp is the p-brane tension. The kinetic Lagrangian has the Polyakov form using the

worldvolume metric γIJ , (I = 0, 1, . . . , p),

LP = −
√−γ

2

(
γIJGIJ − (p − 1)

)
. (2.2)
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The WZ Lagrangian is the pullback of p + 1 form b determined from a closed and super-

invariant p + 2 form h. For minimal spinor θ in the D dimensions,

LWZ=b∗, h = db = − i

p!
dθ /Πp dθ, (2.3)

where the super invariant one forms ΠM , (M = 0, . . . ,D − 1), and the induced metric GIJ

are

ΠM=dXM + iθΓMdθ ≡ dξIΠI
M , GIJ=ΠI

MΠJ
NηMN . (2.4)

To show its closure we need the gamma matrix identity (A.3) valid in the D dimensions

where p-branes exist [11] (See appendix A for detailed notations). For the M2-brane we

will discuss in this paper the explicit form of b is

b = −1

2
(iθΓMLdθ)

(
ΠMΠL − (iθΓMdθ)ΠL +

1

3
(iθΓMdθ)(iθΓLdθ)

)
. (2.5)

LB is the B-field Lagrangian and is the pullback of a closed B-field. It is introduced

without modifying the supergravity equations of motion.

In ref. [4] we have shown the non-relativistic p-brane worldvolume Lagrangian is ob-

tained from the relativistic one by rescaling of the supercoordinates and the tension as

Xµ = ωxµ, XA = xA, θ =
√

ωθ− +
1√
ω

θ+, Tp = ω1−pT̃p. (2.6)

and then taking ω → ∞. In the non-relativistic limit, the longitudinal coordinates Xµ, (µ =

0, 1, . . . , p) of the string are rescaled while the transverse ones XA, (A = p + 1, . . . ,D − 1)

are left untouched, which implies that the transverse fluctuations are small. The scaling

behavior of the fermionic coordinates in (2.6) is characterized by their transformation

properties under the matrix Γ∗, which splits the fermionic coordinates into two eigenspaces

θ± of Γ∗ with eigenvalues ±1,

θ± ≡ PP±θ, PP± =
1

2
(1 ± Γ∗), Γ∗ = Γ0 . . . Γp. (2.7)

In the Polyakov form we should also rescale the worldvolume metric γIJ as

γIJ = ω2γ̃IJ . (2.8)

In the ω → ∞ limit the Lagrangian has divergent terms of order ω2. They can be cancelled

by adjusting the divergent contribution of the B-field Lagrangian LB in (2.1) in the non-

relativistic limit,

LB ≡ Tp det(∂IX
µ) = ω2T̃p det(∂Ix

µ) ≡ ω2 T̃p LB
div. (2.9)

Its contribution to the energy is precisely compensated with the contribution coming from

the tension of the brane. Under these choices the action in the ω → ∞ is finite and shown

to have a non-relativistic supersymmetry and kappa invariance.

– 3 –



J
H
E
P
0
3
(
2
0
0
6
)
0
5
8

Making these rescalings in the Lagrangian (2.1) we get

Sp = T̃p

∫
dp+1ξ

(
ω2(LP

div + LWZ
div + LB) + (LP

fin + LWZ
fin )

)
, (2.10)

where

LP
div = −

√−γ̃

2

(
γ̃IJgIJ − (p − 1)

)
, (2.11)

LP
fin = −

√−γ̃

2
γ̃IJGnr

IJ (2.12)

and1

gIJ = eI
µeJ

νηµν , eµ = dxµ + iθ−Γµdθ−, (2.13)

Gnr
IJ = uI

AuJ
BδAB + 2iθ+Γµe(I

µ∂J)θ+, uA = dxA + (iθ−ΓAdθ+ + iθ+ΓAdθ−).

Here and hereafter inverse power terms of ω, which do not contribute in the ω → ∞ limit

eventually, are omitted. The sum of divergent terms of the WZ and B field Lagrangians is

shown to be

LWZ
div + LB = det(eI

µ)=
√−g. (2.14)

By adding LP
div the ω2 terms of the total Lagrangian is

ω2Ldiv = ω2

[
−
√−γ̃

2

(
γ̃IJgIJ − (p − 1)

)
+

√−g

]
. (2.15)

It is straightforward to show that it has an expansion of (γ̃IJ − gIJ) starting from their

bi-linear terms,

ω2Ldiv = −ω2

2
AIJ,KL(γ̃IJ − gIJ)(γ̃KL − gKL), (2.16)

where2

AIJ,KL|γ̃IJ=gIJ
=T̃p

√−g

4
(gIKgJL + gILgJK − gIJgKL). (2.17)

We can now rewrite this superficially divergent term in a way that the ω → ∞ limit can be

taken smoothly. The idea is to introduce Lagrange multipliers to rewrite the action. For

the case p 6= 1 it is

ω2Ldiv = λIJ (γ̃IJ − gIJ) +
1

2ω2
A−1

IJ,KLλIJλKL, (2.18)

where

A−1
IJ,RSARS,KL = δI

(KδJ
L),

A−1
IJ,KL|γIJ=gIJ

= T̃p
2√−g

(
gIKgJL + gILgJK − 2

p − 1
gIJgKL

)
. (2.19)

1The symmetrization conventions here are A(iBj) = 1
2
(AiBj + AjBi), A[iBj] = 1

2
(AiBj − AjBi).

2We only need to consider A and A−1 in the vicinity of γ̃IJ = gIJ . Corrections are proportional to

(γ̃ − g)2 and turn to vanish in the ω → ∞ limit.
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(2.18) reproduces (2.16) by integrating out the λIJ variables. We can take the strict non-

relativistic limit ω → ∞ in (2.18) and be left with a finite contribution:

L∗ = λIJ(γ̃IJ − gIJ). (2.20)

For the p = 1 case AIJ,KL is singular and a device is required. Following to [5] we

write

ω2Ldiv = −ω2 T̃p

2

√
−γ̃γ̃00γ̃µ̂ν̂ f µ̂f ν̂, (2.21)

where µ̂ = 0, 1 and

f µ̂ ≡
[
e0

µ̂ −
√−γ̃

γ̃11
εµ̂ρ̂ηρ̂σ̂e1

σ̂ − γ̃01

γ̃11
e1

µ̂

]
(2.22)

and rewrite the superficially divergent term as

Ldiv = λµ̂f µ̂ +
1

2ω2T̃p

√−γ̃γ̃00
λµ̂λν̂η

µ̂ν̂ , (2.23)

which reproduces (2.21) by integrating out the λµ̂ variables. It becomes in the non-

relativistic limit ω → ∞
L∗ = λµ̂f µ̂. (2.24)

Now that we have properly defined the superficial divergence, we can finally write the

complete finite action for non-relativistic p-branes as

Sp
nr = T̃p

∫
dp+1ξ

(
LP

fin + LWZ
fin + L∗) = T̃p

∫
dp+1ξ

(
−
√−γ̃

2
γ̃IJGnr

IJ + LWZ
fin + L∗

)
.

(2.25)

In contrast to the relativistic case, the non-relativistic Polyakov Lagrangian (2.25) con-

tains extra multiplier variables λ’s. As was discussed in [1] for the string case, they are

indispensable to realize the non-relativistic symmetry and the spectrum upon quantization.

The Nambu-Goto form of the non-relativistic p-brane action can be obtained by

eliminating the worldvolume metric γ̃IJ using the equations of motion with respect to

λIJ , (p 6= 1) or λµ̂, (p = 1) cases,

γ̃IJ = gIJ , (p 6= 1), and γ̃IJ ∝ gIJ , (p = 1). (2.26)

The action (2.25) becomes

Sp
nr = T̃p

∫
dp+1ξ

(
LNG

fin + LWZ
fin

)
=T̃p

∫
dp+1ξ

(
−
√−g

2
gIJGnr

IJ + LWZ
fin

)
. (2.27)

The finite part of the WZ Lagrangian LWZ
fin is the pullback of the ωp−1-th order term bnr of

p + 1 form b in the non-relativistic expansion. It is obtained by integrating ωp−1-th order

term of h in (2.3). The explicit form of bnr for the non-relativistic M2-brane (p = 2) is

given as [4],

bM2
nr = −1

2

{
K+

µν

[
eµeν − Kµ

−eν +
1

3
Kµ

−Kν
−

]
+ K−

µνKµ
+

[
eν − 1

3
Kν

−

]
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+ LµB

[
2eµuB − eµLB − Kµ

−uB +
2

3
Kµ

−LB

]

+ K−
AB

[
uAuB − LAuB +

1

3
LALB

]}
, (2.28)

where

K±
µν = iθ̄±Γµνdθ±, Kµ

± = iθ̄±Γµdθ±, K−
AB = iθ̄−ΓABdθ−,

LµA = iθ̄+ΓµΓAdθ− + iθ̄−ΓµΓAdθ+, LA = iθ̄+ΓAdθ− + iθ̄−ΓAdθ+. (2.29)

3. Non-relativistic M2 to non-relativistic D2 brane

In [8] the D2-brane action is obtained by dualizing 11-th coordinate X11 of the M2-brane to

the BI U(1) potential. In this section we show that the non-relativistic D2-brane action is

obtained from non-relativistic M2-brane by dualizing 11-th coordinate of the non-relativistic

M2-brane in the same manner as in the relativistic case. As the non-relativistic D2-brane

action is obtained by taking the non-relativistic limit of the relativistic one [6], the non-

relativistic limit and the dualization are commutative.

We first summarize briefly the result of [8]. In order to obtain D2-brane from M2-brane,

the U(1) gauge field degrees of freedom must be introduced. There is an extra coordinate

X11 in the M2 brane which appears in the action in a form ϕ = dX11. By introducing one

form Lagrange multiplier A and adding a term T2ϕdA on the Lagrangian the dX11 can be

replaced by ϕ. The one form ϕ can be regarded as an independent variable. The variation

of the Lagrangian with respect to the A gives an equation of motion dϕ = 0 whose solution

is ϕ = dχ. The M2-brane system is reproduced by identifying the χ with X11. On the

other hand if we eliminate the ϕ by its equation of motion we get a Lagrangian depending

on the A. Since the A enters in the Lagrangian only through F = dA the A becomes a

U(1) gauge field. The resulting Lagrangian is shown to describe the D2-brane system.

More explicitly we start with the M2-brane action of Polyakov form (2.1). Replacing

∂IX
11 by ϕI ,

SM2 = −T2

∫
d3ξ

√−γ

2

{
γIJΠm

I Πn
Jηmn + γIJ

(
ϕI + iθ̄Γ11∂Iθ

) (
ϕJ + iθ̄Γ11∂Jθ

)
− 1

}

+T2

∫ {
−C(3) − b(2)ϕ+ϕ dA

}
, (3.1)

where the last term is the Lagrangian multiplier term and m = 0, . . . , 9. The WZ three

form b of the M2-brane (2.5) is split into a term C(3) independent of dX11 and a term

linear in dX11 as

b ≡ −C(3) − b(2)dX11, (3.2)

where

C(3) =
1

2
(iθΓmndθ)

(
ΠmΠn − (iθΓmdθ)Πn +

1

3
(iθΓmdθ)(iθΓndθ)

)

+
1

2
(iθΓmΓ11dθ)(Πm − 1

3
iθΓmdθ)(iθΓ11dθ), (3.3)
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b(2) = (iθΓmΓ11dθ)(Πm − 1

2
iθΓmdθ). (3.4)

By integrating out the ϕI , the action becomes that of the D2-brane,

SD2 = −T2

∫
d3ξ

√−γ

2

{
γIJΠm

I Πn
Jηmn − 1 +

1

2
γIKγJLFIJFKL

}

+T2

∫ {
−C(3) − C(1) F

}
, (3.5)

where

F = dA − b(2), and C(1) = iθ̄Γ11dθ. (3.6)

F is the superinvariant U(1) field strength modified by the NS two form b(2). C(3) and C(1)

are the RR potential forms in the flat supergravity background. The second line of (3.5)

is giving the WZ Lagrangian of the D2-brane satisfying

d
(
C(3) + C(1)F

)
= idθ

(
ΓmnΠmΠn

2!
+ Γ11F

)
dθ, (3.7)

which is the condition required for the Dp-brane actions [12 – 15].

Eq. (3.5) is the D2-brane action of the Polyakov type. It has been shown [8] perturba-

tively in F that it gives the Dirac-Born-Infeld action by an integration of the worldvolume

metric γIJ ,

SBI = −T2

∫
d3ξ

√
− det(GD2

IJ + FIJ) − T2

∫ (
C(3) + C(1)F

)
, (3.8)

where GD2
IJ is the induced metric of D2-brane

GD2
IJ = Πm

I Πn
Jηmn. (3.9)

In the appendix B we show it to all order of F .

The non-relativistic D2-brane worldvolume action is obtained from that of the non-

relativistic M2-brane. We begin with the non-relativistic action of M2-brane (2.27). In

contrast to the relativistic case we can use the NG form in which the worldvolume metric

has been eliminated,

SM2
nr = −T̃2

∫
d3ξ

√−g

2

{
gIJuA

I uB
J ηAB + 2iθ̄+Γµeµ

I∂Iθ+

}
+ T̃2

∫
bM2
nr . (3.10)

In the WZ Lagrangian the bM2
nr is given in (2.28) as

bM2
nr = −C(3)

nr − b(2)
nr dx11, (3.11)

where C
(3)
nr is the RR three form potential and b

(2)
nr is the NS two form in the non-relativistic

limit

C(3)
nr =

1

2

{
K+

µν

[
eµeν − Kµ

−eν +
1

3
Kµ

−Kν
−

]
+ K−

µνKµ
+

[
eν − 1

3
Kν

−

]
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+Lµb

[
2eµub − eµLb − Kµ

−ub +
2

3
Kµ

−Lb

]
+ K−

ab

[
uaub − Laub +

1

3
LaLb

]

+Lµ11

[
eµ − 1

3
Kµ

−

]
L11 + K−

b11

[
ub − 1

3
Lb

]
L11

}
,

b(2)
nr = Lµ11(e

µ − 1

2
Kµ

−) + K−
a11(u

a − 1

2
La), (3.12)

where the fermionic bi-linears K’s and L’s are given in (2.29). We separate terms depending

on dx11 and replace dx11 with ϕ by adding a Lagrange multiplier term ϕdÃ in the action

SM2
nr = −T̃2

∫
d3ξ

√−g

2

{
gIJuI

auJ
bηab + gIJ (ϕ + C(1)

nr )I(ϕ + C(1)
nr )J + 2iθ+Γµeµ

I∂Iθ+

}

+T̃2

∫ (
−C(3)

nr − b(2)
nr ϕ + ϕ dÃ

)
, (3.13)

where a, b = 3, . . . , 9. C
(1)
nr is RR one form potential equal to L11 in (2.29),

C(1)
nr = L11 = iθ̄+Γ11dθ− + iθ̄−Γ11dθ+ (3.14)

and (ϕ + C
(1)
nr )I is the I-th component of the one form (ϕ + C

(1)
nr ) . By integrating out the

ϕI we arrive at the non-relativistic D2-brane action,

SD2
nr = −T̃2

∫
d3ξ

√−g

2

{
gIJGD2

nr;IJ +
1

2
gIKgJLFnr;IJFnr;KL

}

+T̃2

∫ {
−C(3)

nr − C(1)
nr Fnr

}
, (3.15)

where

GD2
nr;IJ = uI

auJ
bηab + 2iθ̄+Γµe(I

µ∂J)θ+. (3.16)

Fnr is the superinvariant U(1) field strength modified by the NS two form b
(2)
nr ,

Fnr = dÃ − b(2)
nr . (3.17)

The non-relativistic D2-brane action (3.15) obtained by dualizing x11 of the non-

relativistic M2-brane coincides with the one obtained by taking the non-relativistic limit

of the D2-brane action. The non-relativistic Dp-branes have been derived [6] by taking the

non-relativistic limit of the DBI actions for general p. Here we illustrate it for the D2-brane

case but starting from the Polyakov form action (3.5). To take the non-relativistic limit of

the D2-brane action (3.5) we make the rescaling as in the M2-brane case, (2.6) and (2.8)

Xµ = ωxµ, Xa = xa, θ =
√

ωθ− +
1√
ω

θ+, (3.18)

γIJ = ω2γ̃IJ , T2 =
1

ω
T̃2, (3.19)

where θ± is defined using the projectors for D2-brane,

PP± =
1

2
(1 ± Γ∗), Γ∗ = Γ0Γ1Γ2. (3.20)
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In addition to it we need the rescaling of the U(1) gauge field,

AI = ωÃI . (3.21)

These rescalings in (3.5) lead us to

SD2 = T̃2

∫
d3ξ

[
ω2

(
LP

div + LWZ
div

)
+

(
LP

fin + LWZ
fin

)]
, (3.22)

where

LP
div = −

√−γ̃

2

(
γ̃IJgIJ − 1

)
, LP

fin = −
√

−γ̃

(
1

2
γ̃IJGD2

nr;IJ +
1

4
γ̃IK γ̃JLFnr;IJFnr;KL

)
,

(3.23)

where GD2
nr;IJ and Fnr;IJ ere given in (3.16) and (3.17). The divergent terms have the

same form as M2-brane case, except the dimensions of the target space is 10 in the D2-

brane. Here we make an alternative analysis to obtain the NG form of action. In the

above Lagrangian (3.22) we regard ω sufficiently large but finite and inverse power terms

of ω, which will not contribute, are omitted. Now, we remove the dependence on the

worldvolume metric γ̃IJ from the Lagrangian (3.22) by solving the equation of motion of

γ̃IJ as

γ̃IJ = gIJ +
1

ω2
TIJ , (3.24)

where TIJ is the worldvolume energy-momentum tensor defined from Lfin. The ω−2 term

in γ̃IJ could give finite contributions when the γ̃IJ in (3.24) is introduced back into the

action (3.22). However, it can be shown that these terms cancel and do not contribute

after all.3 For further calculations we can take only the leading term of (3.24); γ̃IJ = gIJ .

Using it in the divergent term LP
div it becomes

d3ξLP
div = −d3ξ

√−g =
1

3!
εµνρe

µeνeρ. (3.25)

Combining it with the divergent term of the WZ Lagrangian LWZ
div of (3.5)

d3ξLdiv =
1

3!
εµνρe

µeνeρ − 1

2

{
K−

µν

[
eµeν − Kµ

−eν +
1

3
Kµ

−Kν
−

]}

=
1

3!
εµνρ dxµdxνdxρ. (3.26)

It is an exact form and is canceled by adding the B field Lagrangian same form as (2.9).

Now, we can take the limit ω → ∞ and obtain the non-relativistic action for D2-brane,

SD2
nr = −T̃2

∫
d3ξ

√−g

2

{
gIJGD2

nr;IJ +
1

2
gIKgJLFnr;IJFnr;KL

}

+T̃2

∫ {
−C(3)

nr − C(1)
nr Fnr

}
. (3.27)

It has the same form as (3.15) obtained by dualizing x11 of the non-relativistic M2-brane.

3It also shows that the sub-leading terms in (2.8) and (3.19), if any, do not contribute to the finite

Lagrangians. See appendix C.
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4. non-relativistic M2-brane to non-relativistic IIA superstring

The reduction of the M2-brane to the IIA superstring has been discussed [7]. We first make

a short review of the relativistic case. We assume the M2-brane extends in X0,X1 and X11

directions and are the longitudinal coordinates. In doing the reduction of the M2-brane to

the IIA superstring we assume the X11 is a compact coordinate parametrized by ρ

X11(τ, σ, ρ) = ρ (4.1)

and other supercoordinates are independent of it, (m = 0, 1, . . . , 9)

Xm(τ, σ, ρ) = Xm(τ, σ), θ(τ, σ, ρ) = θ(τ, σ). (4.2)

Using this (j = 0, 1)

Π11
j = iθΓ11∂jθ, Π11

2 = ∂2X
11 = 1 (4.3)

and the 3 × 3 induced metric of the M2-brane becomes

GIJ =

(
Πi

mΠj
nηmn + Πi

11Π11,j Πi
11

Πj
11 1

)
(4.4)

It follows

G = det(GIJ) = det(GIIA
ij ) = GIIA, (4.5)

where GIIA
ij is 2 × 2 induced metric of the IIA string

GIIA
ij = Πi

mΠj
nηmn. (4.6)

Using them the WZ term of the M2-brane (2.5) becomes the IIA Green-Schwarz superstring

action [16]

dξ3LM2;WZ = dρ dξ2 εij(iθΓmΓ11∂iθ)

(
Πm

j − 1

2
(iθΓm∂jθ)

)
= dξ3LIIA;WZ. (4.7)

Then the M2-brane action becomes, using (4.5) and (4.7), the IIA superstring action

SIIA = T IIA

∫
dτdσ(−

√
−GIIA + LIIA;WZ) (4.8)

with the string tension

T IIA =

(∫
dρ

)
TM2. (4.9)

The non-relativistic IIA superstring action has been obtained from the Green-Schwartz

action in [4]. Here we show it is obtained by the double dimensional reduction of the non-

relativistic M2-brane. The reduction is similar to the relativistic case given above but

an attention should be paid for the spinor sector. The 11D fermion θ is split into the

Majorana-Weyl spinors θ± of chiralities ±1 using hh± = 1
2(1 ± Γ11). In the non-relativistic

limit each Majorana-Weyl spinors are further separated using the projection operators PP±
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in 10D. Since the longitudinal coordinates of the M2-brane are x0, x1 and x11 the projection

operators PP± in (2.7) of the non-relativistic M2-brane is

PP± =
1

2
(1 ± Γ∗), Γ∗ = Γ0Γ1Γ11. (4.10)

A crucial property is that the Γ∗ has same form for the IIA superstring and the projection

operators, hh± and PP±, are commuting. It makes the non-relativistic limit and the double

dimensional reduction commutative.

In doing the reduction of the non-relativistic M2-brane to the non-relativistic IIA

superstring we follow the same procedure as the relativistic case. We assume x0, x1 and

x11 are the longitudinal coordinates and the x11 is a compact coordinate parametrized by ρ

x11(τ, σ, ρ) = ρ. (4.11)

Other supercoordinates are independent on it,

xm(τ, σ, ρ) = xm(τ, σ), θ±(τ, σ, ρ) = θ±(τ, σ). (4.12)

Under these assumptions, for (i = 0, 1; µ̂ = 0, 1),

(
ei

µ̂, e2
µ̂

ei
11, e2

11

)
=

(
∂ix

µ̂ + iθ−Γµ̂∂iθ−, 0

iθ−Γ11∂iθ−, 1

)
,

gIJ =

(
gIIA
ij + ei

11ej
11, ei

11

ej
11 1

)
, gIIA

ij ≡ ei
µ̂ej

ν̂ηµ̂ν̂ , (4.13)

gIJ =

(
gij
IIA, −gik

IIAek
11

−gjk
IIAek

11 1 + gk`
IIAek

11e`
11

)
, det gIJ = det gIIA

ij . (4.14)

where gij
IIA is the inverse of induced metric gIIA

ij of the IIA superstring . For the transverse

components, with the index â = 2, . . . 9,

ui
â = ∂ix

â + (iθ−Γâ∂iθ+ + iθ+Γâ∂iθ−), u2
â = 0, (4.15)

Gnr
IJ =

(
ui

âuj
b̂δ

âb̂
+ 2iθ+Γµ̂e(i

µ̂∂j)θ+ + 2iθ+Γ11e(i
11∂j)θ+, iθ+Γ11∂iθ+

iθ+Γ11∂jθ+, 0

)
. (4.16)

Using them in the Nambu-Goto term of the non-relativistic M2-brane Lagrangian (2.27)

it becomes that of the non-relativistic IIA superstring,

LNG
fin = −

√−g

2
gIJGnr

IJ = −
√
−gIIA

2
gij
IIAGIIA

nr;ij,

GIIA
nr;ij = ui

âuj
b̂δ

âb̂
+ 2iθ+Γµ̂e(i

µ̂∂j)θ+. (4.17)

In the WZ three form bM2
nr of the non-relativistic M2-brane (2.28) only terms including

e2
11 = 1 remain and

bM2
nr = −dρ

{
K+

µ̂11

(
eµ̂ − 1

2
K µ̂

−

)
+

1

2
K−

µ̂11K
µ̂
+ + L

b̂11

(
ub̂ − 1

2
Lb̂

)}
. (4.18)
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Using a relation Γµ̂Γ11θ± = ±εµ̂ν̂Γ
ν̂θ± in (A.11) and the IIA cyclic identity (A.5) it becomes

the WZ Lagrangian of the non-relativistic IIA superstring given in [4] up to an exact form.

Then the non-relativistic M2-brane action is reduced to that of the non-relativistic IIA

superstring

SIIA
nr = T̃ IIA

∫
dτdσ

{
−e

2
gjk
IIA uj

âuk
b̂δ

âb̂
− 2i e (θ+Γµ̂eµ̂

i∂iθ+)

−2i εjk
(
θ+ΓâΓ11 ∂jθ−

) (
uk

â − i θ+Γâ ∂kθ−
)}

, (4.19)

where e and eµ̂
i are the determinant and inverse of ei

µ̂ respectively and

T̃ IIA =

(∫
dρ

)
T̃M2. (4.20)

5. T-duality of non-relativistic D2 and D1 branes

It is known Dp-branes are T-dual of D(p + 1)-branes [9, 10]. The T-duality covariance of

the worldvolume actions of D-branes is studied in detail [17, 18]. The T-dualities of the

non-relativistic branes have been discussed in [1]. In this section we discuss the T-duality

as that of the non-relativistic D-brane worldvolume actions. Although our results can

be applied to general Dp-branes we confine our discussions to the case of the T-duality

between D2 and D1 branes for definiteness. There is a subtlety in the non-relativistic limit

since the D2-brane belongs to IIA sector while D1-string does to IIB sector and there is

a chirality flip of a Majorana-Weyl fermion. In contrast to the case of reduction from

the M2 to the IIA superstring discussed in the last section, the chirality projectors hh±

and non-relativistic projectors PP± do not commute. Nevertheless we can show that the T-

duality transformations and non-relativistic limits are commutative and the non-relativistic

D1-string can be obtained from non-relativistic D2-brane by the T-duality.

D2 to D1. In the relativistic D2-brane X0,X1 and X2 are the longitudinal coordinates

and depend on ξI = (τ, σ, ρ). In doing reduction to D1 we assume one of the longitudinal

coordinate, X2, is compact and parametrized by ρ

X2(τ, σ, ρ) = ρ (5.1)

while others Xm, (m 6= 2), AI and θ are functions of τ and σ only. The dynamical degree of

freedom, X ′2, of D1 coordinate is supplied from that of a U(1) gauge field component A2,
4

X ′2=A2, (5.2)

and others are

X ′m=Xm, (m 6= 2) A′
j=Aj, (j = 0, 1). (5.3)

4In this section primed variables are those of D1 and unprimed ones are of D2. The variables in the

non-relativistic limit are indicated with tildes.
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The D2(IIA) spinors are related to those of D1(IIB) by flipping one of chirality component

θ′ =

(
θ′1

θ′2

)
=

(
1 + τ3

2
+

1 − τ3

2
Γ2

)(
θ+

θ−

)
=

(
hh+θ

Γ2 hh−θ

)
. (5.4)

Both IIB spinors θ′1 and θ′2 are Majorana-Weyl fermions with same chirality +. Under

this T-duality transformation the worldvolume action of the D2-brane (3.8) turns out to

be that of the D1-string,

SD1 = −T1

∫
d2ξ

√
− det(GD1

ij + F ′
ij) − T1

∫
C(2), (5.5)

where

GD1
ij = Π′m

i Π′n
j ηmn, Π′m=dX ′m + iθ

′
Γmθ′, (5.6)

F ′ = dA′ − iθ
′
Γmτ3θ

′
(

dX ′m +
i

2
θ
′
Γmθ′

)
, C(2)=iθ

′
Γmτ1θ

′
(

dX ′m +
i

2
θ
′
Γmθ′

)
. (5.7)

Although the transformation breaks manifest Lorentz covariance the resulting action is

superPoincare invariant and kappa invariant [17, 18].

D1 to non-relativistic D1. In the non-relativistic limit the D1-string variables are

rescaled as

˜(x′µ̂)=
1

ω
X ′µ̂, (µ̂ = 0, 1), (̃A′

j)=
1

ω
A′

j, (j = 0, 1), (5.8)

(̃θ′) =

(√
ω PP ′

+ +
1√
ω

PP ′
−

)
θ′, T̃1=T1, (5.9)

where PP ′
± are the non-relativistic projectors for D1-string,

PP ′
± =

1

2
(1 ± Γ′

∗), Γ′
∗ = Γ01τ1. (5.10)

By taking ω → ∞ limit we obtain non-relativistic D1-string action [6]. Abbreviating tilde

and prime indices for the non-relativistic D1 variables,

SD1
nr = T̃D1

∫
dτdσ

{
−e

2
gjk uj

âuk
b̂δ

âb̂
− 2i e (θ+Γµ̂eµ̂

i∂iθ+) − e

4
gijgk`FD1

nr;ikFD1
nr;j`

−2i εjk
(
θ+Γâτ1 ∂jθ−

) (
uk

â − i θ+Γâ ∂kθ−
)}

. (5.11)

Comparing to the non-relativistic IIA superstring (4.19) Γ11 is replaced by τ1 in the WZ

term and FD1
nr is Fnr of (3.17) in which Γ11 is replaced by τ3.

D2 to non-relativistic D2. On the other hand starting from the relativistic D2-brane

action (3.8) we have obtained the non-relativistic D2-brane action (3.27) in the non-

relativistic limit. The non-relativistic rescalings are (3.19) and (3.21),

x̃µ=
1

ω
Xµ , (µ = 0, 1, 2), ÃI=

1

ω
AI , (I = 0, 1, 2) (5.12)

and

θ̃ =

(√
ω PP+ +

1√
ω

PP−

)
θ, T̃2=ω T2, (5.13)

where PP± are the projectors for D2-brane,

PP± =
1

2
(1 ± Γ∗), Γ∗ = Γ012. (5.14)
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Non-relativistic D2 to non-relativistic D1. From the non-relativistic D2-brane to

non-relativistic D1-string we make the same T-duality transformation as the relativistic

case. Compactify in the longitudinal direction x̃2 and choose

x̃2(τ, σ, ρ) = ρ (5.15)

while others are independent of ρ. The dynamical degree of freedom, (x̃2)′, of non-

relativistic D1 string coordinate is transferred from that of a U(1) gauge field compo-

nent Ã2,

(x̃2)′=Ã2, (5.16)

and others are

(x̃m)′=x̃m, (m 6= 2), (Ãj)
′=Ãj, (j = 0, 1). (5.17)

The non-relativistic D2(IIA) spinors are related to those of non-relativistic D1(IIB) by

flipping one of chirality component

(θ̃)′ =

(
hh+θ̃

Γ2 hh−θ̃

)
=

(
hh+(

√
ω PP+ + 1√

ω
PP−)θ

Γ2 hh−(
√

ω PP+ + 1√
ω

PP−)θ

)
. (5.18)

They show that the T-duality transformations and the non-relativistic limit are com-

mutative especially

(θ̃)′=(̃θ′) and (x̃2)′=˜(x2′). (5.19)

Note the latter comes from the fact that both the longitudinal coordinates Xµ and the

U(1) gauge field AI are rescaled in a same power of ω under the non-relativistic rescaling.

The commutativity guarantees that the non-relativistic D1-string action obtained by the

T-duality transformation of the non-relativistic D2-brane coincides with that given by the

non-relativistic limit of the D1-string. Actually making the transformations on the non-

relativistic D2 brane action (3.27) we can obtain non-relativistic D1 string action (5.11).

6. Summary

In this paper we have analyzed, at the world volume level, several corners of M-theory de-

scribed by non-relativistic theories. In particular we have studied how these non-relativistic

theories are mapped to each other by the duality symmetries of the worldvolume actions.

In particular we have analyzed how the non-relativistic M2-brane is related via these dual-

ities to non-relativistic D2-brane, non-relativistic IIA fundamental string and also by using

T-duality to non-relativistic D1-string. Their worldvolume actions coincide with those ob-

tained from the relativistic actions by taking the non-relativistic limit [4, 6]. Thus we have

shown that the non-relativistic limit and the duality transformations are commutative as

illustrated in the figure 1.

From a more technical point of view we have constructed non-relativistic branes start-

ing from the Polyakov formulation of relativistic M2 and D2-brane. One can also show

that the kappa symmetry is maintained in the non-relativistic limit and it is also preserved

through the use of duality symmetries of M theory. Since non-relativistic D-branes in the
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static gauge and θ− = 0 are described by free supersymmetric gauge theories it would

be interesting to see how these M dualities are realized on these supersymmetric gauge

theories.
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A. Notations and some useful formulae

Here we summarize some notations. Indices are

10 dim 11 dim

target space : m,n = 0, . . . , 9 M,N = 0, . . . , 10

p = 1 p = 2

target space, longitudinal : µ̂, ν̂ = 0, 1 µ, ν = 0, 1, 2

target space, transverse : â, b̂ = 2, . . . , 9 a, b = 3, . . . , 9

worldvolume : i, j = 0, 1 I, J = 0, 1, 2

and we use A,B = 3, . . . , 9, 11 for transverse indices when we work in 11 dimensions. The

metrics of target space and worldvolume have mostly + signatures. The totally antisym-

metric Levi-Civita tensor is normalized by ε012...p = +1, and ε012...p = −1.

The gamma matrices are Γm and Γ11 = Γ0Γ1 . . . Γ9. They can be chosen real by taking

the charge conjugation matrix C = Γ0 and satisfy

C−1ΓMC= − (ΓM )T , CT = −C. (A.1)

The conjugate θ of the Majorana spinor is defined by θ = θTC. For type IIA theories θ

is a Majorana spinor while for type IIB theories there are two Majorana-Weyl spinors θα

(α = 1, 2) of the same chirality. The index α on which the Pauli matrices τ1, τ2, τ3 act is

not displayed explicitly. This leads to some useful symmetry relations as

χ̄λ = λ̄χ, λ = Γmε → λ̄ = −ε̄Γm, λ = Γ11ε → λ̄ = −ε̄Γ11. (A.2)

In 11-dimensions we have the gamma matrix identity

(CΓML)(αβ(CΓL)γδ) = 0, (A.3)

where all indices α, β, γ, δ are symmetrized. Therefore

(dθΓMLdθ)(θΓLdθ) = −(θΓMLdθ)(dθΓLdθ). (A.4)
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In 10-dimensions the gamma matrix identity is

(CΓmΓ11)α(β(CΓm)γδ) + (CΓm)α(β(CΓmΓ11)γδ) = 0, (A.5)

where Γ11 can be replaced by τi (i = 1, 3) for type IIB spinors.

From this gamma matrix identity we can derive cyclic identities in 10-dimensions

∑

IJK cyclic

[
ΓmθI (θ̄JΓm θK) + ΓmΓ11θI (θ̄JΓmΓ11 θK)

]
= 0, (A.6)

for the type IIA spinors and

∑

IJK cyclic

{
ΓmτiθI

(
θ̄JΓmθK

)
+ ΓmθI

(
θ̄JΓmτiθK

)}
= 0, (i = 1, 3). (A.7)

for type IIB spinors.

In the non-relativistic brane theories spinors are separated by projection operators

PP± =
1

2
(1 ± Γ∗) , θ± = PP±θ (A.8)

where Γ∗ is defined for each systems as

IIA string : Γ∗ = Γ0Γ1Γ11

IIB string : Γ∗ = Γ0Γ1τ3

D1 : Γ∗ = Γ0Γ1τ1

D2 : Γ∗ = Γ0Γ1Γ2

M2 : Γ∗ = Γ0Γ1Γ11. (A.9)

For the D2-brane there is a relation

Γµνθ± = ∓εµνρΓ
ρθ± (A.10)

and

Γµ̂Γ11θ± = ±εµ̂ν̂Γ
ν̂θ±, Γµ̂τ1θ± = ±εµ̂ν̂Γ

ν̂θ± (A.11)

for the F1 and D1 strings.

The differential forms and the spinors have independent gradings. For Ap,r,Bq,s of the

form grades p, q and the Grassman parities r, s

Ap,rBq,s = (−1)pq+rs Bq,sAp,r. (A.12)

Components of the forms are defined by

Ar =
1

r!
Ai1...irdξi1 . . . dξir , (A.13)

and differentials are taken from the left.
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B. DBI action from D2-brane Polyakov action

We have seen that the action of D2-brane in the Polyakov form is obtained by dualizing

X11 of the M2-brane action, (3.5). The kinetic term is

SPol = −T2

∫
d3ξ

√−γ

2

{
γIJGD2

IJ − 1 +
1

2
γIKγJLFIJFKL

}
(B.1)

while the WZ term does not depends on the metric γIJ . Here we give a proof that it gives

the DBI action (3.8)

SBI = −T2

∫
d3ξ

√
− det(GD2

IJ + FIJ) (B.2)

by integrating the worldvolume metric. In order to show it we should solve the equation of

motion of the worldvolume metric and put it back to the action to eliminate its dependence.

The equation of motion by taking variation of the action (B.1) with respect to γIJ , is

γIJ =
2

X − Y − 1

(
GD2

IJ −FIKγKLFLJ

)
, (B.3)

where we have defined

X = γIJGD2
IJ , Y =

1

2
γIJFJKγKLFLI . (B.4)

Since we are in 3 worldvolume dimensions it is convenient to introduce independent three

vector BK by

FIJ = εIJKBK (B.5)

so that (B.3) is

γIJ =
2

X − Y − 1

(
GD2

IJ +
1

det γ
{γIJ(BKγKLBL) − (γIKBK)(γJLBL)}

)
, (B.6)

and Y in (B.4) is

Y = −
(
BIγIJBJ

)

det γ
≡ −(BγB)

γ
(B.7)

Multiplying γIJ on (B.6)

3 =
2

X − Y − 1

(
X +

2

γ
(BγB)

)
. (B.8)

Multiplying BIBJ on (B.6)

(BγB) =
2

X − Y − 1

(
BGD2B

)
. (B.9)

Solving (B.7) and (B.8) for X and (BγB) as

X = 3 − Y, (BγB) = −γ Y (B.10)

– 17 –



J
H
E
P
0
3
(
2
0
0
6
)
0
5
8

and using them in (B.9)

γ Y(1 − Y) + (BGD2B) = 0. (B.11)

Return them back to (B.6)

γIJ = GD2
IJ − 1

γ (1 − Y)2
(GD2

IKBK)(GD2
JLBL), (B.12)

and computing γ = (det γ) we get

γ = GD2 − GD2(BGD2B)

γ (1 − Y)2
= 0. (B.13)

(B.11) and (B.13) are solved as

Y= − (BGD2B)

GD2
, γ=

(GD2)2

(BGD2B) + GD2
(B.14)

and we determine γIJ in terms of GD2
IJ and BI as

γIJ = GD2
IJ − (GD2

IKBK)(GD2
JLBL)

(BGD2B) + GD2
. (B.15)

Finally we use it in the Lagrangian density of (B.1). By squaring it becomes

L2 =
−γ

4
(X − 1 − Y)= −

(
GD2 + (BGD2B)

)
= − det(GD2

IJ + FIJ). (B.16)

and the DBI action (B.2) follows from it.

C. ω
−2 order term of γIJ does not contribute

As we have seen in section 3 divergent term of LP (3.23) is

LP
div = −

√−γ̃

2

(
γ̃IJgIJ − 1

)
, (C.1)

and on the other hand the γ̃ij from the Lagrange equation of (3.22) is

γ̃IJ = gIJ +
1

ω2
TIJ + O

(
ω−4

)
(C.2)

A priori, we can expect that the ω−2 order term of this expansion will give finite contri-

bution in the divergent ω2LP
div. However it is easy to show that this is not what happens.

Introducing the expansion of γ̃IJ in LP
div

LP
div = −

√−g

2

(
1 +

1

ω2
gIJTIJ

) 1
2
(

(gIJ − 1

ω2
T IJ)gIJ − 1

)

= −
√−g

2

(
1 +

1

2ω2
gIJTIJ

)(
2 − 1

ω2
T IJgIJ

)

= −√−g + O
(
ω−4

)
(C.3)

where T IJ = gIKTKLgLJ . It shows that ω−2 order term of γ̃IJ in (C.2) does not give finite

contribution in the divergent Lagrangian ω2LP
div.
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