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1. Introduction

Non-relativistic limit of string theories appear to be solvable sectors [fl, fl]. It can provide
us a deeper understanding of string theories and can be helpful to answer some of open
questions as for example AdS/CFT correspondence. In [J—[] the non-relativistic limits
of strings and branes have been analyzed using the worldvolume actions. They have the
Galilean supersymmetries and the non-relativistic spectra. A notable property is that the
kappa symmetry can be maintained in the non-relativistic limit. By fixing the kappa gauge
choice suitably these systems become free in the static gauge .

In this paper we examine some of dualities between branes and strings in the non-
relativistic limit using their worldvolume actions. It is interesting to see how these dualities
remain in the non-relativistic limit [fl]. Here we study the dualities at the worldvolume
actions by considering the non-relativistic M2-brane as a starting point to obtain non-
relativistic type IIA superstring and non-relativistic D2-brane, using analogous procedures
to the relativistic case [, §. We also examine the T-duality between D2 and D1 branes [d,
[0 and find that the T-duality transformations are compatible with the non-relativistic
limit. In the cases we examine in this paper we see the dualities remain in the non-
relativistic sector of the string theories, (figure [I).

The paper is organized as follows. In section [, we obtain the non-relativistic p-brane
worldvolume action of Polyakov type. In section | we consider a reduction from non-
relativistic M2-brane to non-relativistic D2-brane by dualizing the 11-th coordinate in the
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Figure 1: This diagram shows the different ways in which the non-relativistic type IIA string,
non-relativistic D2-brane and non-relativistic D1-string are obtained. Due to the commutativity of
the non-relativistic limit and the dualities, we can arrive at the same actions by taking in different
paths.

same way as in the relativistic case. In section [ we discuss the double dimensional reduc-
tion of the non-relativistic M2 brane to obtain the non-relativistic type IIA superstring.
In section | we analyze the T-duality transformation of the non-relativistic D2-brane to
non-relativistic D1-string. Summary is in the last section and appendices are attached for

notations and some detail.

2. NR limit of p-branes

The non-relativistic limit of the p-branes have been discussed using their worldvolume
actions for the bosonic branes [ and the supersymmetric ones [[]. It is established how to
obtain worldvolume actions of non-relativistic branes from the relativistic ones of Nambu-
Goto form. Here we make a short summary but starting from Polyakov form action and
we find the non-relativistic p-brane action of Polyakov form.

We start by considering the supersymmetric p-brane action in a flat D dimensional

background,

SP = Tp/dp“g L, L=rt+ "% 4 B, (2.1)
where T, is the p-brane tension. The kinetic Lagrangian has the Polyakov form using the
worldvolume metric v;7, (I =0,1,...,p),

cP = ——V;” (VG —(p—1)). (2.2)



The WZ Lagrangian is the pullback of p + 1 form b determined from a closed and super-
invariant p + 2 form h. For minimal spinor # in the D dimensions,

Vi, h=db = —— dOIIP b, (2.3)
p!
where the super invariant one forms ITM (M =0,...,D—1), and the induced metric Gy
are
M =axM 4+ 60Map = ag'm; M, Gr=TMI N narw. (2.4)

To show its closure we need the gamma matrix identity (JA.J) valid in the D dimensions
where p-branes exist [L1] (See appendix [A] for detailed notations). For the M2-brane we
will discuss in this paper the explicit form of b is

1 - _ 1 - _
b = —5 (i prrdf) <HMHL — (0T Map)* + g(iHFMdH)(iGFLd9)> . (2.5)

LB is the B-field Lagrangian and is the pullback of a closed B-field. It is introduced
without modifying the supergravity equations of motion.

In ref. [l we have shown the non-relativistic p-brane worldvolume Lagrangian is ob-
tained from the relativistic one by rescaling of the supercoordinates and the tension as

XH = wrt, XA =4, 0 =+\wh_+ ieu, T, = w'PT,, (2.6)
NG

and then taking w — oco. In the non-relativistic limit, the longitudinal coordinates X*, (u =
0,1,...,p) of the string are rescaled while the transverse ones X4, (A=p+1,...,D —1)
are left untouched, which implies that the transverse fluctuations are small. The scaling
behavior of the fermionic coordinates in (B.§) is characterized by their transformation
properties under the matrix I'y, which splits the fermionic coordinates into two eigenspaces
0+ of I'y with eigenvalues +1,

1
Hi E]Pie, Pi = 5(1:|:F*), F* :FQ...FP. (27)
In the Polyakov form we should also rescale the worldvolume metric v;; as
Y1y = WAL (2.8)

In the w — oo limit the Lagrangian has divergent terms of order w?. They can be cancelled
by adjusting the divergent contribution of the B-field Lagrangian £7 in (R.]) in the non-
relativistic limit,

LB =T, det(9; X") = T, det(9r2") = W T, L. (2.9)

Its contribution to the energy is precisely compensated with the contribution coming from
the tension of the brane. Under these choices the action in the w — oo is finite and shown
to have a non-relativistic supersymmetry and kappa invariance.



Making these rescalings in the Lagrangian (R.1)) we get

SP = Tp/dp“& (W(Lhiy + L7 + L£P) + (Lfn + LET)) (2.10)
where
Ly = —@ (3" grr—(p—-1)), (2.11)
Ly = —@ Gy (2.12)
and!
gr7 = er’'e; N, et = dx* +i0_THdf_, (2.13)

7= urtusPoap + 20, Tpe "0 01, ut =da? + (i0_Td0, +i0,Td6_).

Here and hereafter inverse power terms of w, which do not contribute in the w — oo limit
eventually, are omitted. The sum of divergent terms of the WZ and B field Lagrangians is
shown to be

LYZ 4 P = det(ef")=v/—g. (2.14)
By adding £ the w? terms of the total Lagrangian is
[V

(g —(p—1) +v=9g | (2.15)

2
wlyaiy = w 5

It is straightforward to show that it has an expansion of (J7; — grs) starting from their
bi-linear terms,

w?Lay = —5 AUKL(WJ —917)(AxL — 9K L), (2.16)
where?
AKL \/4 (g1 gIL 1 gl glK _ glJ gLy (2.17)

We can now rewrite this superficially divergent term in a way that the w — oo limit can be
taken smoothly. The idea is to introduce Lagrange multipliers to rewrite the action. For
the case p # 1 it is

- 1
Wzﬁdiv = )‘IJ ('YIJ - gIJ) + ﬁA[‘]{KL)‘IJAKL, (2-18)
where
-1 RSKL _ s (Ks L
Ay rsA = 4, 5J ),
-1 2
AIJ,KL’VIJZQIJ = —\/— 9IK9JL + 9ILgJiKx — . T9119KL | - (2.19)

'The symmetrization conventions here are A;Bjy = 1(A:;B; + A;B;), A;Bj = 2(AiB; — A;B;).
2We only need to consider A and A~' in the vicinity of 415 = grs. Corrections are proportional to
(7 — g)* and turn to vanish in the w — oo limit.



(2.1§) reproduces (.14) by integrating out the A/’ variables. We can take the strict non-

relativistic limit w — oo in (R.1§) and be left with a finite contribution:

£ =X F15 = g19). (2.20)

AITKL

For the p = 1 case is singular and a device is required. Following to [{] we

write
w?Laiy = —w? L2/-37%75 fEF7, (2.21)
where 1 = 0,1 and
f‘a = 60“ - —€ﬂp’l’]ﬁ&61& - ~—1€1‘u (222)
1 1
and rewrite the superficially divergent term as

Laiy = M fF + Aadon™ (2.23)

2w2T ~~OO

which reproduces (R.21]) by integrating out the \; variables. It becomes in the non-
relativistic limit w — oo

=\t (2.24)
Now that we have properly defined the superficial divergence, we can finally write the
complete finite action for non-relativistic p-branes as

Sgr — Tp/dp+1§ (£§n+£}§ﬁz+ﬁ*) _ Tp/dp+1§ (_\/2_'7 IJG +£ +£*>
(2.25)
In contrast to the relativistic case, the non-relativistic Polyakov Lagrangian (R.25) con-
tains extra multiplier variables X’s. As was discussed in [} for the string case, they are
indispensable to realize the non-relativistic symmetry and the spectrum upon quantization.
The Nambu-Goto form of the non-relativistic p-brane action can be obtained by

eliminating the worldvolume metric 477 using the equations of motion with respect to
M (p#1) or A, (p=1) cases,

Y17 =915, (p#1), and Arjxgrs, (p=1). (2.26)

The action (R.25) becomes
SE. =T, / e (LR + L) =T, / dPrle ( Y2 glam ol > (2.27)

The finite part of the WZ Lagrangian £} Z is the pullback of the wP~!-th order term by, of
p+ 1 form b in the non-relativistic expansion. It is obtained by integrating w?~'-th order
term of h in (R-J). The explicit form of by, for the non-relativistic M2-brane (p = 2) is

given as [,

1 1 _ 1
by’ = —5{1% [e“e” —K"e" + gKﬁK”] + K, KY [e” - gK”]



2
+ Lup [MUB —elLP — KMuP 4 gK“LB]
1
+ Kip [uAuB — LB+ gLALB] } (2.28)

where

K, =i0:Tydf.,  Ki =i6:TVd0y, K, p=i6_Tapdf_,
Lya = 04T, 0gdf_ +i0_T,Tadfy, LA =i0,TAd6_ +i0_T4do,.  (2.29)

3. Non-relativistic M2 to non-relativistic D2 brane

In [§ the D2-brane action is obtained by dualizing 11-th coordinate X! of the M2-brane to
the BI U(1) potential. In this section we show that the non-relativistic D2-brane action is
obtained from non-relativistic M2-brane by dualizing 11-th coordinate of the non-relativistic
M2-brane in the same manner as in the relativistic case. As the non-relativistic D2-brane
action is obtained by taking the non-relativistic limit of the relativistic one [§], the non-
relativistic limit and the dualization are commutative.

We first summarize briefly the result of [§]. In order to obtain D2-brane from M2-brane,
the U(1) gauge field degrees of freedom must be introduced. There is an extra coordinate
X™ in the M2 brane which appears in the action in a form ¢ = dX . By introducing one
form Lagrange multiplier A and adding a term Th@dA on the Lagrangian the dX ! can be
replaced by . The one form ¢ can be regarded as an independent variable. The variation
of the Lagrangian with respect to the A gives an equation of motion dp = 0 whose solution
is ¢ = dy. The M2-brane system is reproduced by identifying the y with X™. On the
other hand if we eliminate the ¢ by its equation of motion we get a Lagrangian depending
on the A. Since the A enters in the Lagrangian only through F = dA the A becomes a
U(1) gauge field. The resulting Lagrangian is shown to describe the D2-brane system.

More explicitly we start with the M2-brane action of Polyakov form (R.1]). Replacing
o1 X" by ¢y,

sM2 — T, / d3§—‘;y {'YIJHTHT}nmn + 417 (o1 +i0T11070) (¢ + 0T 1050) — 1}

+T / {—c<3> — @ty dA}, (3.1)

where the last term is the Lagrangian multiplier term and m = 0,...,9. The WZ three
form b of the M2-brane (B.§) is split into a term C'®) independent of dX' and a term
linear in X as

b=—-CO —p@gx1, (3.2)

where
1 - — 1 _ _
B — §(i0I’mnd9) <HmH” — (40T dO)II" + g(iﬁfde)(iHF"d9)>

+%(z’§1“ml“ud6)(l'[m — éi@l“mdé?)(iﬁl“nde), (3.3)



_ 1 _
b = (40r,,T'11d0) (11" — 50T do). (3.4)
By integrating out the ¢y, the action becomes that of the D2-brane,
V- 1
SP? = ~Ty / a2 {WH}“H%M —1+ 571KWLf1JfKL}
+T, / {-c®—c Fl, (3.5)

where

F=dA-bv?, and W =iflydo. (3.6)

F is the superinvariant U(1) field strength modified by the NS two form b2, ¢ and CW
are the RR potential forms in the flat supergravity background. The second line of (B.5)
is giving the WZ Lagrangian of the D2-brane satisfying

d (C(3) + C(Uj:) — id0 <w

which is the condition required for the Dp-brane actions [I3-[LF].

Eq. (B.H) is the D2-brane action of the Polyakov type. It has been shown [§] perturba-
tively in F that it gives the Dirac-Born-Infeld action by an integration of the worldvolume
metric V7,

SBI _ _, / d3§\/_ det(GP2 + Frj) — T / (0(3) +coW ]—“) : (3.8)
where G? JQ is the induced metric of D2-brane
G?JQ = HTH’}Hmn- (3-9)

In the appendix [B we show it to all order of F.

The non-relativistic D2-brane worldvolume action is obtained from that of the non-
relativistic M2-brane. We begin with the non-relativistic action of M2-brane (R.27). In
contrast to the relativistic case we can use the NG form in which the worldvolume metric
has been eliminated,

s = =T [ e (M utulinag + 2,0, 010, ) + T [0 (30)

In the WZ Lagrangian the b2 is given in (R.29) as
bM2 — _ ) — pB gt (3.11)
where Cr({?n) is the RR three form potential and bﬁ?} is the NS two form in the non-relativistic

limit

1 1 1
) = g{KIy [e“e” — KM+ gKﬁK”} + Ko, K" [e" _ gK”]



2 1
+Lu [2e“ub — LY — KMt + gK“Lb] + K, [uaub — L + gL“Lb

1 1
+Lum [e“ — gK“} "+ K, [ub — ng} LH},
1 _ 1
b2 = Ly(et — S ) + Ko (u = S L), (3.12)

where the fermionic bi-linears K’s and L’s are given in (P.29). We separate terms depending
on dz™ and replace dz'! with ¢ by adding a Lagrange multiplier term ¢dA in the action

s =~y [ @68 gttt + g (o + 1o + OFD), + 2TV, 1010, }

+1 / (—CR - v2p+pdd), (3.13)

where a,b=3,...,9. CT(LP is RR one form potential equal to L' in (R.29),

C) = LM =40, TMdo_ +i0_T™do, (3.14)
and (p + CY(LP) 7 is the I-th component of the one form (p + CY(LP) . By integrating out the
(7 we arrive at the non-relativistic D2-brane action,

~ R /_g 1
Sh? = —T2/d3§T {gIJGT?T‘Q;IJ + —QIKQJLfnr;Ianr;KL}

2
where
GETQ;IJ = UIGUanab + 2’L'9_+F“6(]“8J)9+. (316)

For is the superinvariant U(1) field strength modified by the NS two form bS{i’,
For = dA — b2, (3.17)

The non-relativistic D2-brane action (B.15) obtained by dualizing z'' of the non-
relativistic M2-brane coincides with the one obtained by taking the non-relativistic limit
of the D2-brane action. The non-relativistic Dp-branes have been derived [f] by taking the
non-relativistic limit of the DBI actions for general p. Here we illustrate it for the D2-brane
case but starting from the Polyakov form action (B.H). To take the non-relativistic limit of
the D2-brane action (B.H) we make the rescaling as in the M2-brane case, (B.§) and (-§)

1
Xt = wat, X =a, 0=+vwl_+—0,4, (3.18)
w

7

1.
Y15 = WALy, T, = ;T% (3.19)

where 64 is defined using the projectors for D2-brane,

1
Pi=_(1+I.),  TI.=ToMT (3.20)



In addition to it we need the rescaling of the U(1) gauge field,

A = wAj. (3.21)
These rescalings in (B.5) lead us to
SP? =T, / ¢ [w? (Lhiy + L&) + (L + L] (3.22)
where
Lhi, = —@ (A grs—1), Li,=-V-7 <%’~YUG£T2;1J + i:le:YJLfnr;Ianr;KL> ,
(3.23)

where fo; 1y and Fop.py ere given in (B.16) and (B.17). The divergent terms have the
same form as M2-brane case, except the dimensions of the target space is 10 in the D2-
brane. Here we make an alternative analysis to obtain the NG form of action. In the
above Lagrangian (B.29) we regard w sufficiently large but finite and inverse power terms
of w, which will not contribute, are omitted. Now, we remove the dependence on the
worldvolume metric 477 from the Lagrangian (B.29) by solving the equation of motion of
A1 as

. 1
Y1J = 91J + ETIJ, (3.24)

where T7; is the worldvolume energy-momentum tensor defined from Lg,. The w™? term

in 47y could give finite contributions when the 475 in (B.24) is introduced back into the

action (B.24). However, it can be shown that these terms cancel and do not contribute

after all.? For further calculations we can take only the leading term of (B.24); 477 = g17.
Using it in the divergent term E(I;iv it becomes

1
BeLk = —dde/—g = gsu,,pe“e”ep. (3.25)
Combining it with the divergent term of the WZ Lagrangian £ Z of (B.5)
d3£._i KoV oP EK* BeV _ KHeVY EKMKV
£dw—3!6w,peee—2 w | €'e” — _e—|—3_7
1
= giCuwe dxtdx” dx”. (3.26)

It is an exact form and is canceled by adding the B field Lagrangian same form as (R.9).
Now, we can take the limit w — oo and obtain the non-relativistic action for D2-brane,

) N= 1
Sp? = —Tz/dszg {QIJGEE;IJ + 591K9JLfnr;1anr;KL}
T / [~c o 7.} (3.27)

It has the same form as (B.1§) obtained by dualizing 2! of the non-relativistic M2-brane.

3It also shows that the sub-leading terms in (@) and (B.1), if any, do not contribute to the finite
Lagrangians. See appendix E



4. non-relativistic M2-brane to non-relativistic ITA superstring

The reduction of the M2-brane to the ITA superstring has been discussed [[f]. We first make
a short review of the relativistic case. We assume the M2-brane extends in X%, X! and X!
directions and are the longitudinal coordinates. In doing the reduction of the M2-brane to
the IIA superstring we assume the X' is a compact coordinate parametrized by p

XU(r,0,p) = p (4.1)
and other supercoordinates are independent of it, (m =0,1,...,9)
X"™(1,0,p) = X™(1,0), O(r,0,p) =0(1,0). (4.2)
Using this (7 =0,1)
IN =000, I =8, X" =1 (4.3)

and the 3 x 3 induced metric of the M2-brane becomes

IL.™I1 ‘nn 4 H‘HHH . H'H
Grr— i j Tlmn i ) g 4.4
1J ( Hju 1 ( )
It follows
G = det(Gpy) = det(G}*) = G™, (4.5)
where GgA is 2 x 2 induced metric of the IIA string

Using them the WZ term of the M2-brane (B.5) becomes the ITA Green-Schwarz superstring

action [[[q]
. o 1, - .
de3 LMW Z — dp de? eV (10T, 111 0;0) (H}” — 5(1’91“7%@»9)) — 3 LIAWE (47
Then the M2-brane action becomes, using (f£.5) and ({.7), the IIA superstring action

giA = i / drdo(—V/—GUA 4 LIAWE) (4.8)

T = (/ d,o> M2, (4.9)

The non-relativistic IIA superstring action has been obtained from the Green-Schwartz

with the string tension

action in [[]]. Here we show it is obtained by the double dimensional reduction of the non-
relativistic M2-brane. The reduction is similar to the relativistic case given above but
an attention should be paid for the spinor sector. The 11D fermion 6 is split into the
Majorana-Weyl spinors 8% of chiralities +1 using h* = %(1 +I'y1). In the non-relativistic
limit each Majorana-Weyl spinors are further separated using the projection operators P

,10,



0

in 10D. Since the longitudinal coordinates of the M2-brane are 2°, z! and z!' the projection

operators P1 in (R.7) of the non-relativistic M2-brane is

1
Pi=g(14T.),  T.=DNTy. (4.10)

A crucial property is that the I'y has same form for the ITA superstring and the projection
operators, h. and PPy, are commuting. It makes the non-relativistic limit and the double
dimensional reduction commutative.

In doing the reduction of the non-relativistic M2-brane to the non-relativistic IIA

0

superstring we follow the same procedure as the relativistic case. We assume 2%, 2! and

2! are the longitudinal coordinates and the 2! is a compact coordinate parametrized by p

CEH(T,O',p) =p- (4.11)

Other supercoordinates are independent on it,

™ (r,o,p) =™ (1,0), Oi(1,0,p) =04(T,0). (4.12)
Under these assumptions, for (i =0,1; g =0,1),
< e, egft > B ((%m[‘ +i0_TH9;0_, O>
e, et ) i0_T1o;0_, 1)’
grj = <ggA 1?f1llej11, ei111> ) ggA = eiﬂejﬁ’l’]ﬂg, (4.13)
ik, 11
g = < giiAe,k 1o +_giiA€Z - ) , det g7y = det gg-A. (4.14)

where g;fA is the inverse of induced metric gZIjLA of the ITA superstring . For the transverse

components, with the index a =2,...9,
uid = (%.%’d + (ig_F&8i6+ + Z‘§+Pdai(9_), UQ& = O, (4.15)
nr _ uidujbé&l; + 219+Fﬂ€_(lﬂa])9+ + 2i9+F116(i118j)9+, 10, 1'110;04 (4 16)
L 0,100, 0 ' '

Using them in the Nambu-Goto term of the non-relativistic M2-brane Lagrangian (2.27)
it becomes that of the non-relativistic IIA superstring,
NG _ V9 emr _ NV —gmA ] GHA
fin — 2 g 1J — 9 nryij’
GHA = ui&ujbé&l; + 2i5+1“ﬂe(iﬂ3j)6+. (4.17)

nriij

In the WZ three form b}?2 of the non-relativistic M2-brane (2.2§) only terms including

eo! = 1 remain and

N 1 - i 1 5
pM2 — _dp{Kgu (e“ - 5Kﬁ) + 2KMHK+ + Ly, < — §Lb> } (4.18)

— 11 —



Using a relation I;I'11 04 = £e;,T7604 in (A.11]) and the ITA cyclic identity (A.F) it becomes
the WZ Lagrangian of the non-relativistic ITA superstring given in [l up to an exact form.
Then the non-relativistic M2-brane action is reduced to that of the non-relativistic IIA
superstring

S}LI{} = THA/deJ {—g gfI]Z ujduki’é&l; — 24 6(5+Fﬂeﬂi8i9+)
2 &% (8,7l 0;0-) (wy® — i 0,1 040 ) }, (4.19)

where e and e;" are the determinant and inverse of e;# respectively and

TUA = ( / dp> ™2, (4.20)

5. T-duality of non-relativistic D2 and D1 branes

It is known Dp-branes are T-dual of D(p + 1)-branes [[, [(]. The T-duality covariance of
the worldvolume actions of D-branes is studied in detail [I7, [[§]. The T-dualities of the
non-relativistic branes have been discussed in []. In this section we discuss the T-duality
as that of the non-relativistic D-brane worldvolume actions. Although our results can
be applied to general Dp-branes we confine our discussions to the case of the T-duality
between D2 and D1 branes for definiteness. There is a subtlety in the non-relativistic limit
since the D2-brane belongs to IIA sector while D1-string does to IIB sector and there is
a chirality flip of a Majorana-Weyl fermion. In contrast to the case of reduction from
the M2 to the ITA superstring discussed in the last section, the chirality projectors h*
and non-relativistic projectors P+ do not commute. Nevertheless we can show that the T-
duality transformations and non-relativistic limits are commutative and the non-relativistic
D1-string can be obtained from non-relativistic D2-brane by the T-duality.

D2 to D1. In the relativistic D2-brane X°, X! and X? are the longitudinal coordinates
and depend on ¢/ = (7,0, p). In doing reduction to D1 we assume one of the longitudinal
coordinate, X2, is compact and parametrized by p

X?(r,0,p) = p (5.1)

while others X™, (m # 2), A; and 0 are functions of 7 and ¢ only. The dynamical degree of
freedom, X’ 2, of D1 coordinate is supplied from that of a U(1) gauge field component A,*

X"?=A,, (5.2)

and others are
X"M=X" (m#£2)  Aj=A4;, (j=0,1). (5.3)

4In this section primed variables are those of D1 and unprimed ones are of D2. The variables in the
non-relativistic limit are indicated with tildes.
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The D2(ITA) spinors are related to those of D1(IIB) by flipping one of chirality component

o't 1+7m 1-—m73 o+ hto
! _ .
9_<9,2)_( L rz><9_>—<r2h_9>. (5.4)

Both IIB spinors ¢’ and 6% are Majorana-Weyl fermions with same chirality +. Under

this T-duality transformation the worldvolume action of the D2-brane (B.§) turns out to
be that of the D1-string,

where
GOl ='Wy, T™"=dX"™ +40T™0, (5.6)

F =dA — i@ T30’ <dX’m + %E’rm9'> . CO=g e <dX'm + %5’1“’”9') . (5.7)

Although the transformation breaks manifest Lorentz covariance the resulting action is
superPoincare invariant and kappa invariant [[[7, [§.

D1 to non-relativistic D1. In the non-relativistic limit the D1-string variables are
rescaled as

—~—

(")

1 _,x . 1 .
:;X’“, (L =0,1), (A;):;A;, (j=0,1), (5.8)
N 1 -
@) = (@11»; ~Lp e, fem, (5.9)
Vw
where P/, are the non-relativistic projectors for D1-string,

1
]P;: - 5(1 iF’*), F/* - F01T1. (510)

By taking w — oo limit we obtain non-relativistic D1-string action [f. Abbreviating tilde

and prime indices for the non-relativistic D1 variables,
sbl — Pt /dea {—g g'* uj&uki)é&i) — 2ie(0:T7e;'004) — Zgijguf,g}ikf,g}ﬂ
—21 e’:‘jk (§+F@T1 8j9_) (uk& —1 §+Pd 3k6_>} . (5.11)

Comparing to the non-relativistic IIA superstring (4.19) T'yy is replaced by 71 in the WZ
term and FD! is F,, of (B:I7) in which I'yy is replaced by 73.

D2 to non-relativistic D2. On the other hand starting from the relativistic D2-brane
action (B.§) we have obtained the non-relativistic D2-brane action (B.27) in the non-
relativistic limit. The non-relativistic rescalings are (B.19) and (B.21),

jﬂ:é Xt (p=0,1,2), A,:i A, (I=0,1,2) (5.12)
and
6= (@m + % P_> 9, To=w Ty, (5.13)
where P4 are the projectors for D2-brane,
P, — %(1 LT,),  T.=Ton. (5.14)
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Non-relativistic D2 to non-relativistic D1. From the non-relativistic D2-brane to
non-relativistic D1-string we make the same T-duality transformation as the relativistic
case. Compactify in the longitudinal direction #? and choose

P (r,0,p) = p (5.15)

while others are independent of p. The dynamical degree of freedom, (Z2)’, of non-
relativistic D1 string coordinate is transferred from that of a U(1) gauge field compo-
nent 1212,

(#2) =4, (5.16)

and others are
(@™=3™, (m #2), (4;)'=4;, (j=0,1). (5.17)

The non-relativistic D2(ITA) spinors are related to those of non-relativistic D1(IIB) by
flipping one of chirality component

0) = (rfn 1?5) - (rim ;(&PLZ@PI;)HW) |

They show that the T-duality transformations and the non-relativistic limit are com-

(5.18)

mutative especially

@)=(") and  (&2)=(z). (5.19)
Note the latter comes from the fact that both the longitudinal coordinates X* and the
U(1) gauge field A are rescaled in a same power of w under the non-relativistic rescaling.
The commutativity guarantees that the non-relativistic D1-string action obtained by the
T-duality transformation of the non-relativistic D2-brane coincides with that given by the
non-relativistic limit of the D1-string. Actually making the transformations on the non-
relativistic D2 brane action (B.27) we can obtain non-relativistic D1 string action ([5.11]).

6. Summary

In this paper we have analyzed, at the world volume level, several corners of M-theory de-
scribed by non-relativistic theories. In particular we have studied how these non-relativistic
theories are mapped to each other by the duality symmetries of the worldvolume actions.
In particular we have analyzed how the non-relativistic M2-brane is related via these dual-
ities to non-relativistic D2-brane, non-relativistic ITA fundamental string and also by using
T-duality to non-relativistic D1-string. Their worldvolume actions coincide with those ob-
tained from the relativistic actions by taking the non-relativistic limit [, [f]. Thus we have
shown that the non-relativistic limit and the duality transformations are commutative as
illustrated in the figure [I.

From a more technical point of view we have constructed non-relativistic branes start-
ing from the Polyakov formulation of relativistic M2 and D2-brane. One can also show
that the kappa symmetry is maintained in the non-relativistic limit and it is also preserved
through the use of duality symmetries of M theory. Since non-relativistic D-branes in the
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static gauge and §_ = 0 are described by free supersymmetric gauge theories it would
be interesting to see how these M dualities are realized on these supersymmetric gauge
theories.
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A. Notations and some useful formulae

Here we summarize some notations. Indices are

10 dim 11 dim
target space : mn=20,...,9 M,N=0,...,10

=1 p=2
=0,1 v =20,1,2

target space, transverse : d,l;: 2,...,9 a,b=3,...,9

i, =0,1 1,J=0,1,2

3

target space, longitudinal : [, D

worldvolume : 1,

<

and we use A4, B = 3,...,9,11 for transverse indices when we work in 11 dimensions. The

metrics of target space and worldvolume have mostly + signatures. The totally antisym-

012...p

metric Levi-Civita tensor is normalized by & +1, and €p12..p = —1.

The gamma matrices are '™ and I'y; = I'gI'; ... T'g. They can be chosen real by taking
the charge conjugation matrix C = I'y and satisfy

cirMo=— @M, o = . (A1)

The conjugate 6 of the Majorana spinor is defined by # = #7C. For type IIA theories 6
is a Majorana spinor while for type IIB theories there are two Majorana-Weyl spinors 6,
(a = 1,2) of the same chirality. The index « on which the Pauli matrices 7, 79,73 act is
not displayed explicitly. This leads to some useful symmetry relations as

YA =AY, A=Tpe — A= —el), A=Tne — A= —elq. (A.2)
In 11-dimensions we have the gamma matrix identity
(CT ML) (ap(CTH),5 = 0, (A.3)
where all indices «, 3,7, are symmetrized. Therefore

(dOT ;1,d6) (6T d) = — (T 31,dA)(dOT L dB). (A.4)
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In 10-dimensions the gamma matrix identity is
(CTmI'1)a(CT™)6) + (CTm)a(s(CT" 1)) = 0, (A.5)

where I'yy can be replaced by 7; (i = 1,3) for type IIB spinors.

From this gamma matrix identity we can derive cyclic identities in 10-dimensions

Z [FmHI (§JF’” 9[() + 'y (§JFmF11 9[()] =0, (AG)
I1JK cyclic

for the type ITA spinors and

Z {FmTZH[ (éJFmHK) +I',,.01 (éJFmTiaK)} =0, (Z =1, 3). (A?)
1JK cyclic

for type IIB spinors.
In the non-relativistic brane theories spinors are separated by projection operators

P, =-(1+D,), 0.=P0 (A.8)

DO | —

where I, is defined for each systems as

IIA StI‘iIlg . F* = F0F1F11
IIB string : T'y =Tgl'173
D1: F* = F(]FlTl
D2: F* = F0F1F2
M2 : F* - F0F1FH. (AQ)
For the D2-brane there is a relation
Tpubs = Feuw, 0 (A.10)
and
Fﬂruai = iewl‘ﬁai, F[ﬂ'l@i = iewl‘ﬁai (A.ll)

for the F1 and D1 strings.
The differential forms and the spinors have independent gradings. For AP'", B%* of the

form grades p,q and the Grassman parities r, s
APTBTS = (—1)PITTS BTS APT (A.12)

Components of the forms are defined by

A= LA e dgh, (A.13)
r.

and differentials are taken from the left.
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B. DBI action from D2-brane Polyakov action

We have seen that the action of D2-brane in the Polyakov form is obtained by dualizing
X1 of the M2-brane action, (B.§). The kinetic term is

V= 1
st = T, / a2 {w”G?} —1+ 57”%"%?“} (B.1)

while the WZ term does not depends on the metric v7;. Here we give a proof that it gives
the DBI action (B.§)

SBI — T, / d35\/— det(GP? + Fpy) (B.2)

by integrating the worldvolume metric. In order to show it we should solve the equation of
motion of the worldvolume metric and put it back to the action to eliminate its dependence.
The equation of motion by taking variation of the action (B.1]) with respect to 77, is

2 D2 KL
_ _ B.
M= Ty (GTf = Fixv* " Fry) , (B.3)
where we have defined
1
x =677, Y= 571JfJK7KLfLI- (B.4)

Since we are in 3 worldvolume dimensions it is convenient to introduce independent three
vector BE by

Fry =erxB® (B.5)
so that (B.3) is
2 1
M=y (G?f + @{WIJ(BK’YKLBL) - ('YIKBK)('YJLBL)}> ; (B.6)
and ) in (B4) is
~ (B'yuB?) _ (ByB)
Ve = (B.1)
Multiplying 7'/ on (B.§)
2 2
Multiplying B/B” on (B:4)
_ 2 D2
(ByB) = Toy_1 (BG"*B) . (B.9)
Solving (B.7) and (B-§) for X and (ByB) as
X=3-Y, (ByB)=—Y (B.10)
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and using them in ([B.9)

¥ V(1 - )+ (BGP?B) = 0. (B.11)
Return them back to (B.6)
1
5 =Grf — W(G%BK)(G?LQBL), (B.12)
and computing v = (det y) we get
GD2(BGDQB)
D2
v =GP? - STTRRE = 0. (B.13)
(B.11)) and (B.13) are solved as
BGD2B GD2 2
V=— (7), = o (B.14)

GP2 (BGP2B) + GP2
and we determine vy in terms of G?Jz and B! as

(GTRBX)(GTEBY)

=G1f - : B.15
IYIJ 1J (BGD2B) +GD2 ( )
Finally we use it in the Lagrangian density of (B.1). By squaring it becomes
L% = _T'Y(X —1-Y)=— (GP2 + (BGP?B)) = — det(GP2 + Fr). (B.16)
and the DBI action (B.2) follows from it.
C. w2 order term of v;; does not contribute
As we have seen in section [J divergent term of £ (B:23) is
Ly = ——;W (3791 - 1), (C.1)
and on the other hand the ¥;; from the Lagrange equation of (B.29) is
- 1 _
Y1J =915 + ETIJ +0 (w™) (C.2)

A priori, we can expect that the w™2 order term of this expansion will give finite contri-
bution in the divergent wQEéDiV. However it is easy to show that this is not what happens.
Introducing the expansion of 477 in Eéjiv

1
V=g 1 2 1
ﬁdPiiV:_ 5 1+E91JTIJ (QIJ—ETIJ)QIJ—l
N/ — 1 1
= _Tg (1 + ﬁguTL}) (2 - ETIJ91J>
=—/=g+0 (w™) (C.3)

where T17 = g'K Ty g%/, It shows that w2 order term of 77 in ([C.9) does not give finite
contribution in the divergent Lagrangian wQEéDiV.
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